

NTA SERIES

Isolated 1W Dual Output SM DC/DC Converters

FEATURES

- RoHS compliant
- Efficiency up to 78%
- Wide temperature performance at full 1 Watt load, -40°C to 85°C
- UL 94V-0 Package material
- Footprint over pins 1.64cm²
- Lead frame technology
- 3.3V, 5V & 12V Input
- 3.3V, 5V, 9V, 12V & 15V Output
- Internal SMD construction
- Toroidal magnetics
- 1kVDC Isolation
- MTTF up to 2.1 Million hours
- Power density 1.36W/cm³
- No heatsink required
- Custom solutions available
- Multi-layer ceramic capacitors

DESCRIPTION

The NTA series of miniature surface mounted DC/DC Converters employ leadframe technology and transfer moulding techniques to bring all of the benefits of IC style packaging to hybrid circuitry. Co-planarity of the lead positions is based upon IEC 191-6:1990. The devices are suitable for all applications where high volume production is envisaged.

SELECTION GUIDE									
Order Code ¹	Nominal Input Voltage	Output Voltage	Output Current	Input Current at Rated Load	Efficiency	Isolation Capacitance	MTTF ²		
	V	V	mA	mA	%	pF	kHrs		
NTA0303MC	3.3	±3.3	±152	402	75	29	1005		
NTA0305MC	3.3	±5	±100	388	78	30	399		
NTA0309MC	3.3	±9	±55	405	75	34	827		
NTA0312MC	3.3	±12	±42	390	77	40	375		
NTA0315MC	3.3	±15	±33	392	77	42	206		
NTA0503MC	5	±3.3	±152	259	77	31	964		
NTA0505MC	5	±5	±100	290	69	33	1697		
NTA0505MEC	5	±5	±100	251	80	42	367		
NTA0509MC	5	±9	±55	267	75	38	682		
NTA0512MC	5	±12	±42	260	77	44	343		
NTA0515MC	5	±15	±33	256	78	43	188		
NTA1205MC	12	±5	±100	121	69	50	559		
NTA1209MC	12	±9	±55	113	74	72	375		
NTA1212MC	12	±12	±42	111	75	89	243		
NTA1215MC	12	±15	±33	110	76	100	154		

When operated **with** additional external load capacitance the rise time of the input voltage will determine the maximum external capacitance value for guaranteed start up. The slower the rise time of the input voltage the greater the maximum value of the additional external capacitance for reliable start up.

INPUT CHARACTERISTICS							
Parameter	Conditions	MIN.	TYP.	MAX.	Units		
Voltage range	Continuous operation, 3V input types	2.97	3.3	3.63			
	Continuous operation, 5V input types	4.5	5	5.5	V		
	Continuous operation, 12V input types	10.8	12	13.2			
Reflected ripple current			41	50	mА р-р		

ISOLATION CHARACTERISTICS							
Parameter	Conditions	MIN.	TYP.	MAX.	Units		
Isolation voltage	Flash tested for 1 second	1000			VDC		
Resistance	Viso= 1000VDC	10			GΩ		

GENERAL CHARACTER						
Parameter	Conditions	MIN.	TYP.	MAX.	Units	
Switching frequency	0312MC, 0315MC		100			
	0303MC, 0305MC, 0503MC, 0505MEC		110		kHz	
	All other variants		115			

ABSOLUTE MAXIMUM RATINGS				
Short-circuit protection ³	1 second			
Lead temperature 1.5mm from case for 10 seconds	300°C			
Internal power dissipation	700mW			
Input voltage VIN, NTA03 types	5.5V			
Input voltage V _{IN} , NTA05 types	7V			
Input voltage V _{IN} , NTA12 types	15V			

1. If components are required in tape and reel format suffix order code code with -R, e.g. NTA0505MC-R.

2. Calculated using MIL-HDBK-217F with nominal input voltage at full load.

3. Supply voltage must be disconnected at the end of the short circuit duration.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

Isolated 1W Dual Output SM DC/DC Converters

OUTPUT CHARACTERISTICS					
Parameter	Conditions	MIN.	TYP.	MAX.	Units
Rated Power	T _A =-40°C to 85°C			1.0	W
Voltage Set Point Accuracy	See tolerance envelope				
Line regulation	High V _{IN} to low V _{IN}		1.0	1.2	%/%
	10% load to rated load, 0303MC & 0503MC		10	15	
	10% load to rated load, 5V output types		10	12	
	10% load to rated load, 0309MC		9.0	10	
Load Regulation ¹	10% load to rated load, 0509MC & 1209MC		6.5	8.0	%
	10% load to rated load, 0312MC & 0315MC		11	14	
	10% load to rated load, 0512MC & 1212MC		6.0	8.5	
	10% load to rated load, 0515MC & 1215MC		6.0	7.0	
	BW=DC to 20MHz, 3.3V output types, NTA0305MC & NTA0505MEC		40	80	
	BW=DC to 20MHz, all other 5V output types		50	100	
Ripple and Noise	BW=DC to 20MHz, 9V output types		35	80	mV p-p
	BW=DC to 20MHz, 12V output types		50	110]
	BW=DC to 20MHz, 15V output types		65	110	

TEMPERATURE CHARACTERIS	TICS				
Parameter	Conditions	MIN.	TYP.	MAX.	Units
Specification	All output types	-40		85	
Storage		-55		125	
Case temperature rise above ambient	0305MC, 0505MEC, 0312MC, 0315MC		19		°C
	0303MC, 0309MC, 0503MC		25		
	0505MC, 1205MC		46		
	All other variants		35		
Cooling	Free air convection				

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

C&D Technologies NTA series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specific agency approvals, such as the NTA series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NTA series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

1. 12V input types have typically 3% less load regulation change.

NTA SERIES

Isolated 1W Dual Output SM DC/DC Converters

NTA SERIES

Isolated 1W Dual Output SM DC/DC Converters

TAPE & REEL SPECIFICATIONS

TEMPERATURE DERATING GRAPH

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak reflow solder temperature of 245°C and time above liquidus of 217°C for 80 seconds. The pin termination finish on this product series is Gold, plating thickness 0.1 microns minimum. The series is backward compatible with Sn/Pb soldering systems.

For further information, please visit www.cd4power.com/rohs

C&D Technologies (NCL) Limited reserve the right to alter or improve the specification, internal design or manufacturing process at any time, without notice. Please check with your supplier or visit our website to ensure that you have the current and complete specification for your product before use.

© C&D Technologies (NCL) Limited 2006 KDC_NTAC.7

No part of this publication may be copied, transmitted or stored in a retrieval system or reproduced in any way including, but not limited to, photography, photocopy, magnetic or other recording means, without prior written permission from C&D Technologies (NCL) Limited. Instructions for use are available from www.cd4power.com

www.cd4power.com

C&D Technologies (NCL) Ltd C&D Technologies, Inc.

Tanners Drive, Blakelands North Milton Keynes MK14 5BU, UK

Tel: +44 (0)1908 615232 Fax: +44 (0)1908 617545 email: MK@cdtechno.com **C&D Technologies, Inc.** 11 Cabot Boulevard, Mansfield, MA 02048-1151, USA

Tel: +1 (508) 339-3000 Fax: +1 (800) 233-2765 email: sales@cdtechno.com